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Abstract

Influenza is a yearly recurrent disease that has the potential to become a pandemic. An effective 

biosurveillance system is required for early detection of the disease. In our previous studies, we 

have shown that electronic Emergency Department (ED) free-text reports can be of value to 

improve influenza detection in real time. This paper studies seven machine learning (ML) 

classifiers for influenza detection, compares their diagnostic capabilities against an expert-built 

influenza Bayesian classifier, and evaluates different ways of handling missing clinical 

information from the free-text reports. We randomly identified 31,268 ED reports from 4 hospitals 

between 2008 and 2011 to form two different datasets: training (468 cases, 29,004 controls), and 

test (176 cases and 1,620 controls). We employed Topaz, a natural language processing (NLP) 

tool, to extract influenza-related findings and to encode them into one of three values: Acute, Non-

acute, and Missing. Results show that all ML classifiers had areas under ROCs (AUC) ranging 

from 0.88 to 0.93, and performed significantly better than the expert-built Bayesian model. 

Missing clinical information marked as a value of missing (not missing at random) had a 

consistently improved performance among 3 (out of 4) ML classifiers when it was compared with 

the configuration of not assigning a value of missing (missing completely at random). The case/

control ratios did not affect the classification performance given the large number of training 

cases. Our study demonstrates ED reports in conjunction with the use of ML and NLP with the 

handling of missing value information have a great potential for the detection of infectious 

diseases.
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1 Introduction

A key goal for public health epidemiologists is to detect influenza outbreaks early and 

accurately to save lives and reduce healthcare costs. One way to detect influenza outbreaks 

earlier is to deploy a public health surveillance (or biosurveillance) system that monitors 

routinely collected patient data. For example, BioSense [1] is a system developed by the 

United States Centers for Disease Control and Prevention (CDC), which collects public 

health information from electronic health records to facilitate regional and national 

biosurveillance.

Improving the accuracy of disease detection in individual patients is an important element in 

improving the performance of a biosurveillance system [2]. It is desirable to reduce the time 

lag to outbreak detection and concurrently retain high accuracy of individual disease 

detection. To improve timeliness, several modern biosurveillance systems use chief 

complaints (CCs) from emergency departments (EDs). In contrast to CCs, biosurveillance 

systems that use laboratory-confirmed reports of diseases have higher diagnostic accuracy 

and lower false alarm rates but take a longer time to detect outbreaks. For example, it takes 

on average 1.1 days of turnaround time for the results of polymerase chain reaction (PCR)-

based laboratory test for influenza to be available after a visit [3]. Most importantly, many 

patients with influenza may not have a laboratory test ordered due to costs or hospital 

policies.
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1.1 Data Sources for Biosurveillance

Several approaches have been described for detecting influenza outbreaks. The data sources 

range from chief complaint with low diagnostic accuracies, to PCR-based laboratory tests 

[4] with very high diagnostic accuracies.

Hospital laboratory reports of confirmed influenza cases—Using a laboratory test 

such as PCR for identification of influenza cases has proven to be highly sensitive and 

specific [5], [6]. Laboratory methods could take quite some time to get results back due to 

various delays. For example, a culture-based laboratory test takes on average seven days to 

obtain a result, whereas using real-time PCR (qPCR) reduces the time to about 3–8 hours. 

We also have to consider the time requirements for specimen preparation, which can vary 

from minutes to over an hour, depending on whether a manual or automated method is used 

[7]. If we consider delays in the workflow, overload in the laboratory, transportation of 

samples, and other human-related factors, it would add extra days to getting a result back. 

Furthermore, laboratory testing might not even be available to every patient visit due to the 

incurred laboratory testing cost. For example, in a retrospective evaluation of the 2009 

influenza outbreak in Mexico, only 27% of 63,479 patients with influenza-like-illness had 

access to qPCR testing [8]. As only a small percentage of patients are tested for influenza 

due to these additional costs, it is not practical to use lab test results for detection of 

influenza for every patient visit.

Sentinel clinician reports of influenza-like-illness (ILI) cases—The advantage of 

this approach is that surveillance is performed routinely in all outpatient visits for ILI cases 

in the sentinel clinics. This approach requires the collaboration of clinicians who might be 

overburdened by their normal workload. In addition, these reports are not specific to 

influenza (since other respiratory viruses such as parainfluenza, adenovirus, and respiratory 

syncytial virus, also cause ILI symptoms). In terms of reporting frequency, this approach is 

not ideal since the reports are made on a weekly basis. Also, in many cases the reports are 

generated manually, which may introduce additional errors and time delays in the process 

[9].

Respiratory or constitutional syndrome monitoring through ED chief 
complaints (CCs)—The advantages of this approach are the routine collection of CCs in 

every ED visit and their almost real-time availability. However, using CCs may not be 

specific enough since many diseases have common symptoms and findings [10], and hence 

CCs may have low diagnostic accuracy. Increased attention has been given to the use of ED 

reports for biosurveillance due to the wealth of patient information it provides, including 

clinician’s diagnoses and treatment [11].

1.2 Machine Learning Classifiers for Influenza Detection

Recently, increased attention has been given to the use of Machine Learning (ML) 

classifiers for the detection of influenza cases from ED reports. Elkin et al. [12] 

demonstrated that applying a logistic regression classifier to ED reports has significantly 

better prediction performance (AUC: 0.764) than applying a model to CCs (AUC: 0.653). 
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Similarly, Tsui et al. [13] used an influenza-specific expert-constructed Bayesian Network to 

diagnose influenza in individual patient ED reports achieving an AUC of 0.956.

Both Elkin and Tsui followed a pipeline that first extracts clinical features and maps them to 

codes using a natural language processing (NLP) tool, then they use a machine learning 

(ML) classifier to estimate the presence of influenza. Evaluation of this pipeline showed 

significant differences in performance depending on the NLP tool used [14]. However little 

attention has been given to the evaluation of the ML classifiers used.

In a preliminary study [15], we compared seven ML classifiers with an expert constructed 

Bayesian network for detection of patients with influenza syndrome. We used 41,035 ED 

reports from 8 hospitals and obtained a tie between all ML classifiers with AUCs ranging 

between 0.97 and 0.99. Nevertheless, the selection of controls for test data used in both 

studies [13,15] was biased due to the consideration of only ED visits during the summer 

month of July 2011, which may not represent the true overall case detection performance 

over a longer time period. However, in this study we randomly selected controls for test data 

during a period of 18 months: from September 2010 to December 31, 2011. In addition, this 

study defines a symptom value to be true (T) if the symptom is acute whereas the previous 

studies only considered if a symptom is “present” for true value; similarly in this study, if a 

symptom is not acute or absent, the value of the symptom is false (F).

1.3 Handling of Missing Data

One important contribution of this paper is the recommendation on how we should handle 

missing (i.e., not mentioned) values from ED reports when building ML classifiers for 

detection of influenza cases. It is common that free- text clinical reports have missing 

values. Lin and Haug [16] compared the detection performance of only two Bayesian 

networks using the three missing data categories described below.

Not Missing At Random (NMAR)—The assumption is that missing values in this 

category cannot be derived from the observed data. If we would like to consider the data 

(findings or symptoms) that are missing for a specific reason, we could either assign “false” 

or “missing” for the data. For example, when the value of “nasal swab order” is missing, we 

may assign “false” if we assume that physician did not write the information about “nasal 

swab order” when there is no nasal swab order. However, a missing may not always be 

“false” and it could have many uncertainties: (1) the physician did exam/ask whether the 

patient has the finding or not; (2) the physician forgot to write it down; (3) a NLP tool failed 

to extract the information from the report. A conservative choice is to assign missingness to 

be “missing” instead of “false” which assumes a finding did not occur or not acute..

Missing at Random (MAR)—The assumption is that the absence of a data element 

depends only on the observed data. This assumption implies that the missing elements have 

no assigned values, and the missing data can be inferred from observed values.

Missing Completely At Radom, (MCAR)—The assumption is that the absence of data 

elements is not associated with any other value in the dataset, implying that observing a 
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third state or assigning state False would not introduce additional information. Therefore, 

there is no need to assign a value for the missing data under this assumption.

1.4 Significance and Contribution

There are still open questions of interest to epidemiologists in health departments. Given a 

NLP of interest, which machine learning classifier is preferred for detecting influenza cases? 

Will disease models automatically built by machine learning classifiers perform similar to or 

better than influenza-specific expert-built models? What is the most appropriate assumption 

that can be made when dealing with missing data in electronic health records (EHRs)? 

Choosing between expert-constructed models or automatically learned models is still an 

open question and in this paper we compare their diagnostic capabilities. We hypothesize 

that the performance of these automatically constructed models is similar to models built 

manually by experts.

To the best of our knowledge, our paper is the first one to systematically evaluate the 

performance of classifiers based on three different missing data category configurations 

applied to both training and test datasets with Brier score (defined in the Methods section) as 

an additional metrics, test data resampling, and the use of symptom acuteness for predictive 

performance evaluation.

2 Materials and Methods

This section describes the NLP, datasets, machine learning classifiers, experimental design, 

and evaluation metrics used for comparing the performance of the classifiers.

2.1 Topaz

Topaz is a pipeline-based NLP system developed expressly to extract clinical concepts from 

clinician reports [17], [18]. Previously, Topaz produced a clinical concept with the value of 

present or absent. In this study, we updated Topaz to output one of three values for a clinical 

concept: acute, non-acute, or missing, to focus on infectious diseases surveillance.

Topaz processes a report as follows: First, the IndexFinder algorithm [19] maps textual 

elements to Unified Medical Language System (UMLS) concept unique identifier (CUI) 

codes [20]. Second, Topaz applies knowledge from the Extended Syndromic Surveillance 

Ontology (ESSO) [21], [22] to find attribute–value pairings such as “temp 38.5C”, and 

section-header–term pairs such as “NECK: no tenderness or lymphadenopathy” (which 

provides evidence that the targeted finding cervical lymphadenopathy is absent). Third, 

Topaz uses the ConText algorithm [23] to determine who experienced the finding (e.g., 

patient), whether the finding is mentioned in a conditional way (e.g., “if patient experiences 

fever, she should return”), and whether the finding is historical (chronic). Lastly, Topaz 

integrates information from all the values that a finding appears in the report to determine its 

final output value of acute (state True), non-acute (state False), or not mentioned (state 

Missing).

The guidelines used by Topaz for the determination of condition (finding) acuteness are the 

following. For the non-acute, the condition began more than two weeks ago; meanwhile for 
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the acute: the condition began less than two weeks ago – either a new illness or an acute 

exacerbation of a chronic illness. This guideline also include the following rules:

1. Discharge diagnoses should be marked as acute as these diagnoses refer to 

problems that caused a patient to come to the ED.

2. Physical findings, laboratory findings, and radiology findings that are measured or 

observed during the current clinical encounter should be marked as acute. If they 

were measured or observed at another visit, annotate them as acute or non-acute 

depending on when the visit was.

3. If there is not explicit or implicit information in the text about when a clinical 

condition began, assume it began within the last two weeks and assign the value 

acute. (This is based on the idea that if they came to the ED with the finding it is 

most likely a recent event.)

4. Risk factors are often not associated with temporal information. Annotate risk 

factors as non- acute, because they are assumed to have started more than two 

weeks ago. For this project, risk factors include the following conditions: smoking, 

drinking, illicit drug use, patterns in which an organ or location precedes the phrase 

“risk factors”, such as “cardiac risk factors”, “stroke risk factors”

2.2 Datasets

Unlike conventional syndromic surveillance, which primarily uses ED CCs that are recorded 

by triage nurses [10], [24], in this study we used ED reports that have been recorded by 

clinicians. We collected a total of 31,268 ED reports from four EDs in the University of 

Pittsburgh Medical Center (UPMC) Health System. The ED reports represent ED visits 

during the period between 01/01/2008 and 12/31/2011.

To adhere to HIPPA policy in this study, we used a third-party service that follows a 

standard operation procedure for patient information retrieval from hospital EHR systems 

and de-identification, known as trusted data brokerage service. The study was governed by 

an approved IRB protocol (PRO08030129) at the University of Pittsburgh. The process of 

constructing study datasets for machine learning classifiers was as follows. To de-identify 

the raw free-text ED reports, a trusted data broker first used the De-ID software [25], which 

has been approved for such use by the University of Pittsburgh Institutional Review Board 

(IRB). Then the trusted broker applied Topaz, which extracted clinical findings related to 

influenza from the de-identified free-text reports. Ye et al. [14] found that Topaz had an 

overall accuracy of 0.78 to extract findings from free-text ED reports, which was 

significantly better than the alternative NLP software MEDLEE [26] with an accuracy of 

0.71. In Ye’s study, the Topaz assigned a finding’s value without considering acuteness. In 

this study, we used Topaz to encode 31 findings with UMLS CUI codes Topaz encoded 

each finding as either “reported as acute” (value True or T) if it was present in the report as 

being acute, or not “reported as acute” (value False or F) if either the finding was 

specifically reported as not being present or it was reported as being chronic. The rest of the 

findings were encoded as “missing” (value Missing or M) if they were not found in the 

report.
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The expert-constructed influenza model comprises 31 influenza-related findings based on 

the experience of the board-certified domain expert’s professional assessment [14]. Topaz 

was configured to extract these 31 clinical findings from ED reports. From the 31 findings 

targeted by Topaz some might be missing in a report. For example, a clinician may not 

mention that a patient has cough or rule out cough and not write it down in the report; thus 

Topaz reports the finding cough as missing in the output.

Table 1 lists 31 features used by the expert model and our machine learning classifiers; they 

are ranked in the descending order by likelihood ratio. Eq. (1) defines the likelihood ratio, 

where P(D +) represents the prevalence of influenza, P(T + |D +) is the conditional 

probability of the feature being True given that influenza is True, and P(T+|D−) is the 

conditional probability of the feature being True given that influenza is False.

(1)

We constructed a training dataset and a test dataset for the study from the UMLS CUI codes 

produced by Topaz. The training dataset set consisted of 468 PCR-confirmed cases of 

influenza between 1/1/2008 and 8/31/2010, and 29,004 controls (all ED visits in the summer 

between 7/1/2010 and 8/31/2010, excluding PCR-test positives). The test dataset consisted 

of 176 PCR-confirmed cases and 1,620 randomly sampled controls from ED visits between 

9/1/2010 and 12/31/2011. The sampling time period includes influenza seasons in the years 

2010 and 2011. Estimating the real prevalence of an influenza outbreak prospectively is a 

task with a high degree of uncertainty and requires a better understanding of population 

disease models [27]. The training dataset had a low prevalence of influenza (1.6%) that 

could resemble the prevalence rate of a non-influenza period; while we used for testing a 

higher prevalence of influenza (9.8%), which emulates the conditions of a hypothetical 

outbreak and it is also close to the prior setup in the expert BN model. Figure 1 shows the 

study process flow.

2.3 Expert-constructed Classifier

In our previous study by Tsui et al. [13], a board-certified infectious disease domain expert 

and his two colleagues assessed a Bayesian network that consists of a set of nodes 

representing influenza and its findings. An arc between two nodes represents a probabilistic 

dependency. The prior probability for influenza was set to 10%, and the network is 

composed of 31 nodes that have a nearly naïve Bayes structure. The nodes include features 

such as fever, cough, nausea, headache, wheezing, chill, etc. (Table 1 shows a complete list). 

Compared with Elkin’s influenza predictive model [12], this classifier used 21 more findings 

for influenza modeling. The expert-constructed classifier was built using a software tool, the 

Graphical Network Interface (GeNIe) [28]. Figure 2 illustrates a graphical representation of 

the model.

2.4 Machine Learning Classifiers

The ED reports provide a wealth of patient visit information, and were used to build 

machine learning classifiers to detect influenza cases. To build the classifiers we used 
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WEKA’s (Waikato Environment for Knowledge Acquisition, version 3.6 [29]) and compare 

them to an expert-built Bayesian network (BN) [30] influenza model.

The following summarizes each of the classifiers used in this study.

Expert-MLE—We used the structure of the expert-built BN and modified the network 

probabilities by using maximum likelihood estimates derived from a training dataset.

Naïve Bayes (NB) [31]—NB is a simple BN classifier that assumes that feature (finding) 

nodes are conditionally independent of each other given the target node. The probability 

parameters are estimated from the training data. The parameters were estimated from data 

using the maximum likelihood estimator.

Bayesian Network with the K2 algorithm (K2-BN) [32]—This classifier learns a BN 

from the data using the K2 scoring function and search method to evaluate the probabilities 

of a node having a specific parent or set of parents. It is a forward hill-climbing classifier 

that iteratively evaluates potential models. We set the maximum number of parents for a 

node to 31, allowing the algorithm to search over all possible parent configurations for a 

given node. This value is reasonable given the small number of features. The conditional 

probabilities were estimated using a maximum likelihood estimator. The order of the nodes 

was set in decreasing order of likelihood ratios followed by the disease (influenza) node.

Efficient Bayesian Multivariate Classification (EBMC) [33], [34]—This classifier 

performs greedy search in a subspace of BNs to find the one that best predicts a target node. 

It initially starts with an empty model and then it identifies a set of nodes that are parents of 

the target and predicts it well. EBMC then transforms the temporary network structure into a 

statistically equivalent one where the parents of the target become children of the target with 

arcs among them. Next, it greedily eliminates arcs among these children that improve the 

prediction of the target. It then iterates the whole process until no set of parents (which we 

can view as a “probabilistic rule”) can be added to the target node to improve the prediction 

of it. The expected number of predictors was set to 31, and the models were evaluated using 

the K2 scoring measure. EBMC was implemented as an independent classifier in the Java 

programming language.

Logistic Regression (LR) [35]—It is a parametric classifier that learns a function of the 

form P (Y|X), where Y is the target class (such as a disease), and X is a vector of input 

values. To improve feature estimation, a penalized log likelihood function is used. We built 

a multinomial logistic regression model with a ridge penalty in the likelihood function of 

1.0E-8 (default) and iteration was done until convergence.

Artificial Neural Networks (ANN) [36]—It is a flexible model that expresses complex 

non-linear relationships among the features, which consists of an interconnected group of 

variables. In a basic ANN model there are three layers of neurons that can learn from data 

iteratively through a back propagation classifier. The backpropagation classifier was used to 

train a multilayer perceptron with one hidden layer, and with the number of nodes equal to 

the sum of features and classes. We assigned Weka’s default values for a learning rate with 
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decay of 0.3, and a momentum rate for the backpropagation classifier of 0.2. Suitable ranges 

for these parameters have been found to be between 0.15 – 0.8 for learning rate, and 0.1 – 

0.4 for momentum [37].

Support Vector Machine (SVM) [38]—A basic SVM is a non-probabilistic linear 

classifier that creates a hyperplane using a group of features to separate states in the target 

class. SVM uses the Euclidean distance of the hyperplane from the nearest input values to 

determine the target state. A logistic regression model is fitted to the output of the support 

vector machine to obtain probability estimates. We used the default WEKA training error of 

1.0E-12 and a default tolerance of the boundary of the hyperplane of 1.0E-03.

Random Forests [39]—This classifier generates predictive decision trees based on a 

random selection of features for creating every tree. A decision tree is a model that splits the 

training set into subsets based on the target class, until the splitting no longer adds value to 

the predictions. The final prediction is assigned by the consensus of voting by the individual 

trees. We randomly learned 1,000 trees with only one feature each. A large number of trees 

have been shown to increase the predictive accuracy of the RF [40].

2.5 Experimental Design

Figure 3 summarizes different experimental configurations in this study. We trained all 

machine learning classifiers using only the training dataset. Since some classifiers do not 

handle missing data, we used two approaches for training: 1) assigning all missing values to 

be “non-acute” (value F), and 2) assigning all missing values to be “missing” (value M). The 

first approach assumes that a finding with a missing value reported by Topaz implies that the 

finding is absent or non-acute in the patient, whereas the second approach does not make 

any assumptions and maps a missing finding to a “missing” value. BN models have the 

ability to deal with uncertainty in the data. To better understand the performance differences 

we used the three configurations for performance evaluation, according to the categories of 

missing information:

Configuration 1. All missing values in both training and test datasets were assigned to 

value False.

Configuration 2. All missing values in the training dataset were assigned to value False. 

All missing values in the test dataset were assigned to value Missing (M).

Configuration 3. All missing values in the training dataset were assigned to value False. 

All missing values in the test dataset were left unassigned. This configuration is only 

possible to implement in Bayesian models.

The training dataset has a binary number of classes, either value T or value F. The case/

control ratio is 468 : 29,004 (T:F), which is representative of the non-influenza season. Since 

there is an imbalance between the two classes, we performed additional experiments to train 

the classifiers under equal class ratio (468:468). We randomly resampled without 

replacement the controls in the training dataset and created 5 different datasets with the 

resampled controls and the full influenza cases. The process of dropping at random some 

cases from the majority class to give a balanced dataset is called Random Undersampling 
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(RUS) [41]. Then, we evaluated the average performance of the classifiers created under this 

condition using the test dataset.

We used two standard metrics for model evaluation: the area under the ROC curve (AUC) 

and the Brier Skill Score [42] (BSS). An ideal BSS is close to 1.0, while negative numbers 

indicate models that are less skilled than the weighted dice prediction of 0.0 (unskilled 

reference). The Brier Score (BS) in Equation 2 is measured as the average squared 

difference between the predicted value yk and the observed value ok, with the ideal score 

being 0 and the worst score being 1. On the other hand the Brier Skill Score (BSS) in 

Equation 3 is calculated as a scaled representation of the Brier Score relative to the relative 

frequency of the binary classes or reference Brier Score BSref.

(2)

(3)

For example, BSref is equal to 0.098 in the test dataset with 9.8% of influenza cases, and let 

us assume that a hypothetical classification model has a BS of 0.25, then the BSS would be 

equal to BSS = 1 − (0.25/0.065) = −1.55, , which is considered an unskilled prediction. In 

this sense, it is better to use a BSS because it measures the difference between the score for 

the prediction and the score for the unskilled reference prediction, normalized by the total 

possible improvement that can be achieved. The ideal BSS score is1.

Measurements of the diagnostic tests are computed as ROC curves. The curve is constructed 

by varying the threshold to which the probability that is given by the classifier is considered 

of one class. In order to make comparisons between two curves, we used the nonparametric 

method developed by DeLong et al. [43], which is a commonly used method by biomedical 

researchers using the R package pROC [44]. This method computes correlation matrix 

between the curves, then it applies a χ2 test to obtain a two-sided p-value of statistical 

difference between the curves. All experiments were run on a MacBook Pro with 2.7 GHz 

quad-core i7 processor and 8GB of RAM.

3 Results

In this section, we present the evaluation of the NLP tool under different acuteness values of 

influenza and the evaluation of classifiers under the configurations described in Section 2.5.

3.1 NLP Evaluation

Table 2 shows the results of an evaluation study demonstrating 90% accurate determination 

of 31 targeted findings of influenza in a test set of 122 reports for ED patients with influenza 

(by PCR test) between 9/1/2010 and 12/31/2011.
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3.2 Classifiers Evaluation

Table 3 presents the classification results for the three configurations using the experimental 

design from Table 1. A tie between four algorithms (NB, LR, SVM, ANN) obtained the 

highest AUC (0.93). The expert-built model (Expert) in Configuration 3, where all missing 

values were left unassigned, obtained the lowest AUC (0.8). The expert-built model 

obtained the lowest AUC in all configurations. However, just by updating the priors for the 

expert-built model, to reflect that of the training dataset, the performance increased 

significantly (Expert-MLE). ANN obtained the highest BSS (0.41) in Configuration 2. 

Expert-MLE obtained the lowest BSS (−1.72) in Configuration 3. Bayesian classifiers are 

the only ones that can handle missing values without any preprocessing (Configuration 3). 

Nevertheless, the results from this configuration are not significantly different from 

Configuration 1, where missing values were assigned to False (F). Table 4 presents the 

classification performance results when a resampling technique was used. The classifiers 

trained with a balanced number of samples in each class achieve an equivalent classification 

performance than the same classifiers when not using resampling. All values in the table 

represent the averaged results of applying resampling without replacement 5 times to the 

training dataset.

4 Discussion

Effects of Missing Data in Classification

It is not uncommon to find ED reports with missing data. For example when there is no 

indication of fever noted in the ED report, the reason might be that the patient actually does 

not have fever, or the fever condition was not checked or reported, or the temperature was 

not yet assessed at the time of the report. In this study we assessed three different ways of 

dealing with missing values: missing at random (MAR) in Configuration 1, not missing at 

random (NMAR) in Configuration 2, and missing completely at random (MCAR) in 

Configuration 3. The previous study by Tsui et al. [13] adopted Configuration 3. Our results 

suggest that the missingness of information does not have an impact on the classification 

performance. We recommend the use of NMAR to deal with missing data. However, it does 

not deal with the issue of conflicting evidence among different reports and will be carefully 

analyzed in future work.

Effects of influenza Prevalence in Classification

Class imbalance has been extensively studied in the literature and it is found to be the source 

of classification over-fitting. However, given the volume of our datasets and the flexibility 

of our ML classifiers, we were able to achieve a high performance regardless of the 

prevalence rates in the training sets (50% or 1.6%). The 50% prevalence rate was achieved 

by resampling and the classifier trained by the high prevalence rate showed no statistically 

significant difference in classification performance with the classifier trained by the low 

prevalence rate. We attribute this behavior to the large number of ED reports used that 

created a well-trained classifier when testing under the hypothetical influenza outbreak 

prevalence (9.8%). Given that electronic ED reports are increasingly being used in many 

health systems, we recommend the use of large datasets for training of similar classifiers.
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Classifiers performance

The selection of machine learning classifiers includes Bayesian classifiers (NB, K2-BN), 

function classifiers (LR, ANN, SVM), and decision trees (RF), which are commonly used in 

the literature. EBMC is a novel Bayesian classifier that has shown promising results in 

genomic datasets. We used the performance metric of AUC, which has a maximum value of 

one indicating that for all patients the classifier was able to correctly detect the status of the 

disease. A value of 0.5 or less would indicate that the classifier was not better than random 

guessing among classes. Overall, the results in each configuration were similar between all 

classifiers (no statistically significant difference). Such results are not surprising given the 

large number of training cases and the capabilities of the classifiers.

However, using AUC alone for classifier evaluation may be biased by the prevalence of test 

data. For example, a hypothetical classifier that makes predictions in a dataset with low 

(influenza) prevalence rate (e.g., 10% influenza present, 90% influenza absent) would 

achieve an AUC higher than 0.5. This is called the unskilled classifier problem, because it 

refers to a classifier that performs better than random without any training effort. To address 

this issue we calculated the Brier Skill Score (BSS), which is a measure of calibration. The 

BSS creates an index between −1 and 1 that provides information as of how far away the 

results of any classifier are in relation to the unskilled classifier. We can infer from our 

results that for the most part the expert model is unskilled due to negative BSS scores. In 

contrast, all ML classifiers achieve positive BSS scores, which indicate that all of them have 

the ability to perform better than the unskilled classifier.

Use of Naïve Bayes and Logistic Regression

It has been suggested that the predictions obtained from a LR model are the same as those 

predictions originated from a NB model [46]. LR is consistent with the conditional 

independence assumption used in NB. Nevertheless, there are important differences in each 

algorithm. LR will adjust its parameters to maximize the conditional likelihood of the data, 

even if the resulting parameters are inconsistent with the NB parameter estimates [47]. 

Furthermore, the possibility of making predictions in the presence of missing data is a 

characteristic that is better modeled in a Bayesian approach. The NB model has prior 

parameter estimates that are obtained during the training step, and the prediction of a new 

case can be done without imputing any missing data.

Limitations

Our study had several limitations. 1) The study data came from a single health system. 2) 

Our method used only one NLP tool (Topaz); however, it was compared with MedLEE in 

our previous study [14] and demonstrated similar performance with MedLEE. 3) We only 

used a small subset of UMLS codes instead of extracting all available clinical concepts and 

applying feature selection methods to identify risk factors for each classifier. 4) The expert-

built prediction model and the selection of 31 influenza attributes may be biased.
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5 Conclusion

This study demonstrated that 1) ML classifiers had a better performance than expert 

constructed classifiers given a particular NLP extraction system, 2) using a large number of 

ED notes allowed machine learning classifiers to automatically build models that can detect 

influenza cases, 3) missing clinical information marked as a value of missing (not missing at 

random) had a consistently improved performance among 3 (out of 4) ML classifiers when it 

was compared with the configuration of not assigning a value of missing (missing 

completely at random). 4) Given a large number of training cases the class imbalance 

problem does not affect the classification performance. Since the meaningful use promotes 

the use of electronic health records (EHR) for all hospitals in the United States [48], analysis 

of this data could play an important role in public health surveillance of various diseases. 

This study suggests that analyzing information from the EHR using machine learning 

classifiers can achieve significant accuracies in the presence of abundant clinical reports.
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Highlights

1. ML classifiers performed better than an expert constructed classifier

2. Influenza cases can be detected with ML classifiers built from abundant ED 

reports processed by a natural language processing tool

3. Missing clinical data marked as a value missing improved the ML classifiers 

performance

4. ML classifiers performance was not affected by class imbalance, given abundant 

training samples
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Figure 1. 
Study process flow.
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Figure 2. 
Expert-constructed Bayesian model.
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Figure 3. 
Experiments tree.
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Table 1

Summary of the configurations and experimental design

# UMLS Description

1 C0420679 Nasal swab taken

2 LC0021400* NLP - Lab confirmed flu

3 C0521839 Influenza-like Illness

4 IC0021400* Suspected Flu

5 C0042740 Viral Syndrome

6 C0231528 Myalgias

7 C1260880 Rhinorrhea

8 C0521026 Viral

9 C0015967 Fever

10 C0010200 Coughing

11 C0085593 Chills

12 C0242429 Sore Throat

13 C0231218 Malaise

14 C0003862 Arthralgia

15 C0032285 Pneumonia

16 C0043144 Wheezing

17 C0019825 Hoarseness

18 C0235592 Cervical lymphadenopathy

19 C0018681 Headache

20 C0019079 Hemoptypsis

21 C0015672 Fatigue

22 C0011991 Diarrhea

23 C0009763 Conjunctivitis

24 C0013404 Dyspnea

25 C0003123 Anorexia

26 C0027497 Nausea

27 C0008031 Chest Pain

28 C0010520 Cyanosis

29 C0239430 Pain with eye movement

30 C0085636 Photophobia

31 C0000729 Abdominal Cramps

*
Topaz used two non-UMLS codes LC0021400 and IC0021400 to represent laboratory-tested influenza and suspected influenza extracted from 

free-text ED reports, respectively. Note that the two findings were not defined in 2008 version of UMLS codes.
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Table 2

NLP performance for 31 influenza findings.

Type of Finding Statistic Result (C.I.*)

non-acute
Precision 0.90 (0.87, 0.92)

Recall 0.79 (0.75, 0.82)

acute
Precision 0.86 (0.83, 0.89)

Recall 0.78 (0.75, 0.81)

acute + non-acute

Precision 0.94 (0.93, 0.95)

Recall 0.84 (0.82, 0.86)

Accuracy 0.78 (0.76, 0.81)

acute + non-acute + not mentioned
Accuracy 0.90 (0.89, 0.91)

Kappa between clinician annotation and Topaz findings 0.81 (0.79, 0.83)

*
The 95% confidence interval of the empirical distribution was obtained by bootstrapping with replacement (2000 times), and it was calculated 

using bootstrap percentiles [45] with SAS® software 9.3
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